Woodst		•	Select C	OM Port	Co	mmunication	Calculato				
Firmwa				Data				HP-2	SE I	LP	
S	how Vers	ion	ו	Save	Program	ıs	077		ov per	100 E.S.	1 TSUN
Firmware Update) (Load Programs Backup			FIX SCI ENG		_			
							g 2-				
Fa	ctory Sett	ings		Restore			xty	Rŧ	STO	RCL	Σ+
		105 Elas	h 0105 S	erialNum	ber 5		ENT x <y To x>y</y 	ER +		EEX Nep	CLX GRD +R 9 tan
		-			1.1.1			8111			
	Version 0 Clock	-	Const	Text	Usage	e Flags	+	4		5	6
Version		Dir	Const Date	Text Sunday		e Flags Day		-			6 yx
Version	Clock 8-10-2018	Dir	1	-			+ x#y	4		5	tan++
Version Date 24 Time 14	Clock 8-10-2018	Dir	Date	Sunday		Day	+	4		5	yx

Copyright (c) PANAMATIK Bernhard Emese , June 2020, Rev. 1.05

Contents

1. Introduction	4
2. Connecting the LP calculator	5
Three wire connector	6
Micro USB connector	7
3. Selecting the COM Port	7
4. Show Version	8
5. Firmware Update	9
6. Flash Update	10
7. Factory settings	11
8. Backup	11
9. Restore	12
10. Save Programs	13
11. Load Programs	14
12. Tabs	16
Version	17
Clock	17
Dir	17
Const	17
Text	17
Usage	17
Flags	
13. In Circuit Debugger	18
14. Disassembly Window	21
14.1 Comment Entry	
14.2 Program Flow	
15. RAM registers	
16. Preferences	
16.1 Save	
16.2 Load	
17. Operator.	
18. Get Flash Data	
18.1 ReadFlash	
18.2 Read Variables	
19. Get RAM Data	
19.1 Read RAM	
19.2 Read Registers	
Appendix	
HP-25 Program Steps Mnemonics.	
HP-29C Program Steps Mnemonics.	
HP-33C Program Steps Mnemonics.	
HP-34C Program Steps Mnemonics	
HP-67 Program Steps Mnemonics.	
Files	

Rev 1.00 April 2019 Initial release Rev 1.01 May 2019 HP-67 Mnemonics corrected

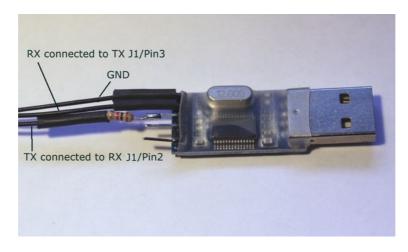
Rev 1.02 May 2019 PC Emulator added

Rev 1.03 Oct 2019 Comment entry, Program Flow, Version 1.03 new features Rev 1.04 Nov 2019 Assembler writing your own ACT Code

Rev 1.05 June 2020 PC Emulator removed, moved to "ACT Analyzer" application

1. Introduction

The "Woodstock LP circuit" is the ultimate upgrade and repair kit for your Woodstock calculator. It contains all Woodstock and Spice models and most of the Classics too. But it has even more capabilities in conjunction with this PC application. This manual describes the HP LP connectivity kit, which allows you to communicate with your LP calculator and save and restore your programs and much more.


The Woodstock LP calculator can be used standalone or together with the HP LP connectivity kit. The application establishes a connection between the Woodstock LP calculator and a Windows PC. With this connection it is possible to update the firmware or to backup and restore your data. The application is very easy to use and pops up as a dialog when started.

The application is running under Windows XP/7/Vista/8/10 using the MicroSoft .NET framework version 3.5. This framework is preinstalled in Windows 7 and later, you have to download and install the framework when using the Windows XP operating system. You need at least one COM Port by inserting an USB/RS232 TTL 3.3V converter.

2. Connecting the LP calculator.

For connecting the calculator you need the LP connection cable. It is an USB/TTL RS232 3.3V converter with three wires and a small 5-pin connector at their end. It must be connected to J1, which you can see at the top left of the image. Pin 1 is the quadratic pad on the far left.

USB/RS232 TTL converter LP connection cable

I recommend to solder an 1k resistor between TX and J1/2, which protects the RX receive pin of the LP circuit in case the converter produces a higher voltage than your battery.

I do not recommend to power the LP circuit from the converter with an additional VCC wire, I prefer using the battery. Of course, if you stay connected for many hours the calculator will not enter sleep mode and the battery will go down, but it will be discharged only after 100 hours.

Don't use the simlar "new ACT" update cable, which has 5 wires. It will damage the PIC processor of the LP circuit, because it uses 5 volt and the Low Power needs only 3.3 volt.

If you open your calculator and remove the LED display you will see the LP circuit and the connector J1 with 5 small pin holes in the upper left corner. Here you have to insert the connection cable plug. Don't solder the cable plug into the circuit, there is no space for it. While updating,

which normally needs only one minute, you can put the connector into the holes and press slighty with your thumb to establish the connection, while the data transfer is accomplished. For getting contact, the right way is first to switch on the calculator, then insert the cable to the J1 connector.

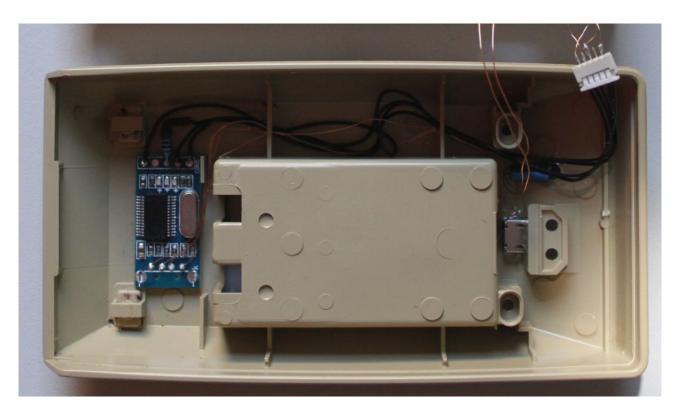
If you think to connect the circuit more often to load and store your programs from/to PC, then it could be advisable to apply a connector to the calculator housing or at least to provide a connetor inside, which is soldered to the J1 connector by 3 wires. In this case it is possible to leave the LED display in place during communication.

If the calculator has entered sleep mode, no communication is possible and you have to wake up the calculator by pressing the DIV button. But if you have activated the connection check box, the calculator will stay awake as long the application runs and pressing any button will of course retrigger the sleep time.

Pin	Name	Remark
1	MCLR	Master Clear (not used, resets the circuit if low)
2	RX	connect to transmit line of converter (3.3V level)
3	ТХ	connect to receive line of converter (3.3V Level)
4	VCC	3.3V (not used if circuit is powered by battery).
5	GND	Ground

J1 connector pinout

Three wire connector


When you decide to install a connector to the housing of the HP calculator a 3-pin head phone jack is a good choice. Or just use pins of a socket strip as shown in the image below as a connector. You can install it in the front of the calculator and then you can always plug in your cable, whenever you like. Use one pin for coding to prevent plugging in the connector reversed!

Micro USB connector

It is also possible to integrate the USB/RS232 converter together with a Micro USB connector into the LP calculator as shown in the image below.

Whenever you plug in the USB cable, you have connection to the LP circuit without openig the calculator. However it is rather difficult to attach the four USB wires to the Micro connector, because it has very tiny contacts. The connector must then be fixed by two component Epoxy glue. The USB pins of the USB converter have to be removed and four copper wires must be soldered between the USB port ad the converter, and three wires GND RX TX must then be soldered to the LP circuit J1 as described above.

Once this is done the LP calculator is the first ever red LED calculator with an USB interface !

3. Selecting the COM Port

Before starting the application you have to plug in the USB cable, then the COM port is available to the system. You have to select the COM port of your plugged in USB connection cable. The combo box on the top left shows all available COM ports of your computer and you have to select the right one. If you have already connected the cable to your LP circuit, the application tries to communicate with the LP circuit by the last COM port in the list and if successful shows the version info in the message field. As soon as the communication is established, also the greyed buttons become available.

4. Show Version

After the COM Port is found you can show the software version by pressing the associated button. You will see the result in the message below the buttons.

Woodstock LP	
Firmware	Data
Show Version	Load Programs
Firmware Update	Send Programs
Flash Update	Backup
Factory Settings	Restore
Program Version 0105 Flash (105 SerielNumber 1

There are two sections with data in the LP circuit, the PIC program, which is the firmware, and the contents of the 512k flash memory, which contains the user programs and data registers of all calculator models.

If you click "Show Version" the PIC program version will be shown followed by the flash data version and last but not least the serial numer of your LP circuit.

In the early LP firmware version prior to 1.05, there were no PC readable version number included, don't bother if FFFF or something else is shown instead of a correct version number. After your first update this will be corrected.

5. Firmware Update

This button opens a file dialog, where you can select an update file. The update file is named "HPLP105.act" or similar, containing the version in its file name. When a correct file is selected, the update starts immediately and the progress bar at the bottom shows the progress, which normally needs only 10 seconds to complete. After the update is done you will get a message, how many bytes are written, which normally is 32k bytes, the complete PIC program space memory.

Woodstock LP	
Firmware	Data
Show Version	Load Programs
Firmware Update	Send Programs
Flash Update	Backup
Factory Settings	Restore

Before opening the file dialog, the application checks, whether it can communicate with the LP. If not it pops up a dialog and tells you first to check the cable. If the reason is sleep mode, then wakeup the calculator, or, if you have no keyboard attached, remove the batteries for some seconds.

Update	
0	No Connection to LP firmware! Check cable! If cable is connected the reason could be: calculator has entered sleep mode or a previous update was interrupted before completion. In this case an update is possible via Bootloader. Do you want to update via Bootloader?
	<u>J</u> a <u>N</u> ein

There are two ways to perform the update. The above described is the simple way, which always works if the communication is established.. The second method is an update via bootloader. There can be circumstances, i.e. when a previous update was interrupted half way and the firmware is no

longer complete, when the LP circuit cannot communicate any longer.

However even in this case an update via the integrated bootloader is still possible, but the procedure is more complicated. We first have to enter the bootloader. This is done by following the instructions on the screen.

Update 📃 🗶	Update
Remove Battery pack, remove cable from calculator, then click OK	Now insert cable, then insert battery pack!
OK Abbrechen	OK Abbrechen

It is important to plug in the update cable to the J1 Connector AFTER the first dialog is closed. The RX line will held low to indicate the bootloader to wait for data instead of jumping to the firmware. If you close the last dialog the file dialog pops up and you can select your update file. The USB cable remains connected to the PC.

After the firmware update is complete, the display shows all digits as 8's blinking, which indicates that the calculator is still in bootloader mode. You have to restart the calculator by disconnecting the power (removing the battery pack).

The newer bootloader version 1.12 of the LP circuit shows, instead of all 8s, the actual bootloader version. Please note that it is not possible to replace the bootloader by the firmware update.

6. Flash Update

Normally after the firmare update is done, also a Flash memory update is necessary. This will update the data written in the 512k Flash memory chip (SST25). The contents of the Flash memory must correspond with the firmware. But no worry, even if the flash memory is totally cleared or corrupted, you will get communication with the firmware, but the LED display will possibly show nothing and the calculator is not running. The easiest way is to restore to factory settings, but if you want to preserve your user programs and settings, you can choose an Flash update file. A file dialog will pop up and you should select the proper binary flash update file, which is named "HPLPflash105.bin", depending on the version.

Updating the flash memory will not overwrite your programs or register data and personal preferences like your Welcome text. It will update only data which is necessary to run the LP firmware. This needs about half the available Flash memory. The flash update needs about one minute to complete.

After having updated both, your calculator and the Flash memory, the "Woodstock LP" is renewed and should run the newest firmware.

7. Factory settings

You can restore the factory settings if you press this button. This will erase all your programs and data. Therefore you will be able to cancel this operation before execution.

ſ	Factory Reset
	Do you want to reset your LP calculator to factory settings? This will erase all your programs and data and settings. If you want to keep your programs you should perform a backup before. Are you sure to continue?
	OK Abbrechen

The operation will last some minutes, because all data in the 512k Flash memory will be erased and reprogrammed. It is advisable to backup your programs before programming the factory settings.

8. Backup

This button saves the complete calculator state to file, including all your programs and data and the "Continuous Memory" of all available calcaulators. Saving the calculator state needs about one minute to complete. The file size is 192 kbyte. Its default extension is "*.wlp" for Woodstock LP.

9. Restore

If you have backuped your LP programs and registers you can restore them by this button. A file dialog will allow you to select the .wlp backup file you have stored. Restoring needs one or two minutes, you will see the progress by the progress bar.

COM4 Sel	ect COM Port 💟 Communication
Woodstock LP	
Firmware	Data
Show Version	Save Programs
Firmware Update	Load Programs
Flash Update	Backup
Factory Settings	Restore
	10 <u>1</u>

There is a default "ClearMemory.wlp" file available, which clears all your programs and data.

10. Save Programs

You can select a calculator and save a single program or all its programs to a human readable ASCII text file. This simplifies householding of a program collection. You can use any PC printer to print your programs to paper. And you can edit the program and load it back into the calculator.

Select Calculator		
HP-25	•	
0	Program No	Save all programs

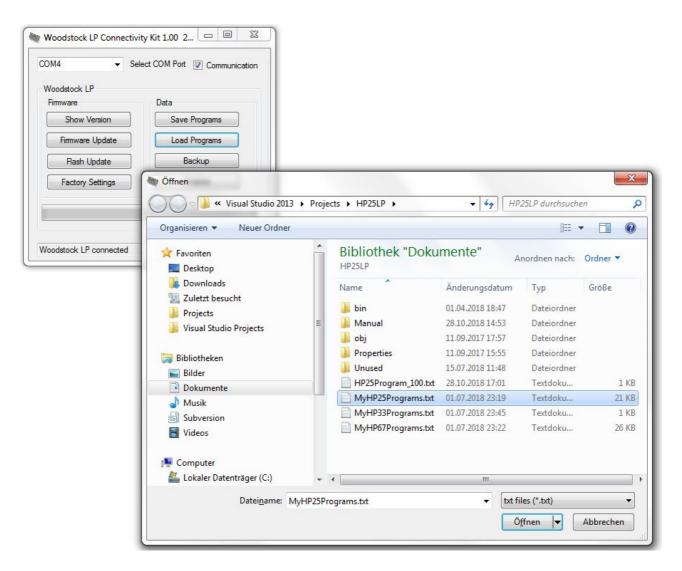
The following text is an example of a small test program, which has been saved to file. The name of the programs is "COUNTER"

HP25

PROGRAM 100 NAME COUNTER

01 1 02 + 03 PAUSE 04 GTO 01

END


The HP-25 programs which are stored by f STO . 00 - f STO . 99 are numbered from 00 to 99 as expected, but the fast access programs f STO 0 to f STO 9 are numbered from 100 to 109. And the HP-25 program collection, which can be loaded by f f RCL .00 - f f RCL .55 or any other calculator program collection is numbered from 110 upwards. The example above can be loaded with f RCL 0.

11. Load Programs.

This is the inverse of "Save Programs". This button will allow you to load either previously saved programs or to load your own handwritten user programs.

Writing programs with a text editor is more comfortable than entering a program using the calculators buttons. Here "Load Programs" comes in. You can transfer individual programs or an entire collection of each calculator from PC to the LP circuit. The programs are simple ASCII files, written by a text editor.

The Syntax has some rules. If you use instructions with arguments, the arguments must be separated by exactly one space character like "STO + 0". The line numbers are irrelevant but must be present, the lines are read sequentially. If you remove or add a line you don't need to correct the line numbers or you can set all line numbers to 0 or 1. Between the line numbers and the instructions there may be one or more white characters. You can insert comment lines, which are marked by a semicolon as first character. And you can add comments after each instruction (since Version 1.02)

An example of a small program for the HP-67 is shown here:

```
HP67 ; this specifies the program is for the HP-67 calculator
; example program for HP-67
PROGRAM 0
NAME COUNTER
000 LBL 1 ; this label marks the begin of the program
000 1 ; add one
000 +
000 PAUSE ; show the result in the display
000 GTO 1 ; jump to begin of loop
END ; end of COUNTER
```

Each Program file starts with the calculator type, HP67 in the above example. All following programs are written for this calculator. The program number can be individually defined and can be in any order.

Each Program is enclosed by the keywords PROGRAM and END. In case of HP-67 programs A maximum of 224 program steps are allowed. There will be an error message if the syntax is not correct for the given calculator or the number of steps exceeds its maximum. The line numer in which the error occured is shown.

When you use comments like in the example above, be aware, that the comments are not transmitted to the LP circuit. And if you save the programs later from the LP calculator you might not want to overwrite the same file, because the comments would be lost. Just choose another file name to keep your comments.

¹ For now only HP-25, HP-29 HP-33 HP-34C and HP-67 programs can be loaded. See Appendix for Mnemonics.

12. Tabs

If you have successfully done the update to version 1.05 or higher you can enlarge the window vertically, and you will discover a tab field, which shows actual data from the calculator. In most tabs you cannot enter values, they show the time, the program directory, your constants and much more, if you press the corresponding tab. But you can enter your user text string and change the actual flags of the calculator.

Version Clock Dir Const Text Usage Flags Woodstock Low Power HP-25C Firmware 0105 Flash 0105 Serial Number 0005	Version Clock Dir Const Text Usage Flags Date 28-10-2018 Date Sunday Day Time 15:40:26 Time 00-00-03.92 Stopwatch Alarm 00:00:00 Alarm
VersionClockDirConstTextUsageFlagsBATTLE SHIPS736248 steps•PLOT / GRAPH036629 steps•QUADR EQU537335 steps•COMPLEX ARIT223033 steps•COMPLEX FUNC061524 steps•2X2 MATRIX706026 steps•BASE B TO 10736627 steps•BASE 10 TO B122337 steps•	Version Clock Dir Const Text Usage Flags 0 2.997924580008 E 08 ^ 1 6.673840000989 E-11 ^ 2 6.022141290023 E 23 3 5.291772109989 E-11 ^ 4 1.602176565981 E-19 5 9.806650000000 E 00 6 6.626069500966 E-34 _ 7 1.674927351973 E-27 _
Version Clock Dir Const Text Usage Flags 2,71 Battery 22 Temperature 13 h 16 min Operating hours 9 h 3 min 28 Write Cycles	Version Clock Dir Const Text Usage Flags Image: Auto Sleep Image: Mnemonics Long Awake Image: Show Logo Date US Steady Display Image: Show Logo Date US Steady Display Image: Check Batt Time AM/PM Time Measure Annunciators Image: Print Keep Regs Key Repeat Print Norm Image: Show Keys Right Align Print Trace Reserved

Symbols

Wakeup All

HP-21 Hardware

Version

This tab shows the actual running calculator type, the PIC firmware version, the 512k Flash Data version and the serial number of the LP circuit. If you haven't updated the firmware to at least 1.05 you probably can't see the correct firmware version, reading the version num ber was not implemented in earlier versions.

Clock

The Clock tab shows the actual date and time and the running stopwatch. If the stopwatch is running in the background it will not be updated in the display. The reason is that the stopwatch display will only be updated in the calculator, when it is displayed. This saves calculator time.

Dir

This shows the directory of your user programs. A list of all program names and the size will be displayed. If a library location is not used, it is marked as empty.

Const

This shows all 100 constants of the LP calculator. which can be accessed by most of the calculator models. 20 of them are preset and cannot be changed.

Text

You can display and enter your personal text. Only capital letters are allowed.

Usage

This tab shows the Operating Time and Flash write cylces. Also the actual battery voltage and temperatur (only roughly estimated) is shown.

Flags

The Flags can be set and reset to enable/disable special features. See the description in the LP manual for more info about these flags.

13. In Circuit Debugger

If you have successfully done the update to version 1.05 or higher you can use many more functions of the application and you can remote control your LP calculator. Enlarge the window to the right and you will discover an image of the calculator and many new buttons and entry fields. What you see in the middle part is the remote control panel of the calculator. First have a look to the "Communication" check box. If it is not activated you can activate it if the LP circuit is connected, then the calculator display will be shown on the real calculator and on the screen as well. All buttons, which you press on the real calculator, will be executed and the result is also shown in your window, but also the buttons you press in the window, will be executed. You can do your calculations remote controlled.

COM8 - Select	COM Port Communication	Calculator	ACT Registers			
	-		0000FFFFFFFFF a	0744 0x01E4	pc Sho	w Code
Woodstock LP Firmware	Data	0.00	210000000000 b	1	sp Sho	w RAM
Show Version	Save Programs		000000000000 c	00	f Shov	Operator
Firmware Update	Load Programs	FIX SCI ENG	000000000000 y	0	P	
Rash Update	Backup	SST BST GTO	000000000000 z	35	flags	
		Σ s Σ-	000000000000000000000000000000000000000	0028	s Select	calculator
Factory Settings	Restore	REFIX PREFIX PREM REG STK	2000000000202 m	0	addr HP-25	c .
			000000000000000000000000000000000000000	0	key	
		x <y +r<="" in="" log="" td=""><td>0074 0752</td><td>ack 🔘 Binary 🖲 D</td><td>)ecimal 🔘 Prgm</td><td>Run</td></y>	0074 0752	ack 🔘 Binary 🖲 D)ecimal 🔘 Prgm	Run
		- 7 8 9	ACT Debug			
Version Clock Dir Con	st Text Usage Flags	x≽y sin cos tan	0-0/44. 10/2	then go to \$sst4		
Woodstock Low Power HP-		+ 4 5 6	Stop	un Animate	Reset	Init RAM
C 0105		x y INT 7x yx X 1 2 3	Single Step	Step Over	Step Out	Step Back
Firmware 0105		x=y +H.MS LAST x PAUSE	Developmental			
Flash 0105			0 Addr	Enable Break	cpoints Prefere	nces
		÷ 0 • R/S	Addr		(5.533 s) T	tal Cycles

On the right side you see the internals of the calculator, the ACT registers. With the corresponding buttons you can single step or run partially through parts of the ROM program of the calculator.

This is not a simulation, but the real calculator will be single stepped. This part of the connectivity kit is called the "In Circuit emulator", it is valid for all Woodstock and Spice Classic and the HP-67 calculators. The register description is far too extensive to be described here. The register usage differs from calculator to calculator, and it is an adventure to understand how the calculator really works while analyzing key strokes and perform arithmetic or trigonometric functions.

All registers can be manipulated by entering new values, when the calculator is stopped. There are three possible states: Stopped, Running and Animate. When the calculator is running it is executing all functions in real time. In Stop mode it waits for the next button, which can be a single instruction step or performing a complete Subroutine "Step Over" or the remaining part of a subroutine until a return instruction will be found "Step Out". Animate differs from Run in that way, that after each instruction the registers will be displayed. this is very slow compared to RUN mode, but shows very nicely how the register contents changes with each instruction.

The text field above the buttons shows the next instruction which will be executed, it contains the address, the instruction code and, if present, also your comments. After executing a single step or a subroutine, the register contents are displayed and if some of them has changed they are displayed in **red text**. Registers that didn't have changed are displayed in black. Thus you can easily see what's going on.

The "Reset" button stops the calculator and sets the program counter pc to 0000. Here you can start your investigation and see how the initialization routine of the calculator is performed.

"Init RAM"	Init RAM
------------	----------

This will reset the Continuous Memory of the calculator to all FFs (all bits set), or the value you have choosen in the preferences. This simulates the calculator state as if a new battery is inserted and some of the models will show "Pr Error", indicating that the "Continuous Memory" contents is lost.

"Single Step" Single Step

Pressing this button will execute a single HP machine instruction. You will see the new register values if any of them have changed. The program counter pc increments by one or jumps to a new location.

"Step Over"	Step Over
-------------	-----------

Executes the complete subroutine if the program counter is located at a JSB instruction, otherwise a normal single step is executed like pressing the "Single Step" button. The "Local Cycles" counter is reset before the JSB instruction is executed. If the program counter does not point to a JSB instruction a normal Single Step is performed.

"Step Out"	Step Ou
------------	---------

Runs the HP machine code within a subroutine until a RETURN instruction is executed. This will stop execution after at the end of the subroutine. The "Local Cycles" counter is reset before execution.

"Breakpoint"

You can define a breakpoint for executing the HP machine code until a specific address is encountered. Enter a 12-bit breakpoint address as octal number. If enabled with the checkbox, the execution will stop when the program reaches the address when program counter and breakpoint address matches.

"Code Breakpoint"

You also can define a code breakpoint. Enter an 10-bit instruction code as octal number. Then press

"Run". If the breakpoint is enabled the execution will stop as soon the executed instruction and the code breakpoint matches.

"Binary Decimal" 🔘 Binary 💿 Decimal

This bit is also part of the ACT chip, it changes when the "binary" or "decimal" command is executed. It can be altered like the register contents can be changed.

"Prgm Run" 💿 Prgm 💿 Run

This changes from Program to Run mode and is the same as using the PRGM/RUN slider switch.

14. Disassembly Window

To understand the program flow you need to see the disassembled instructions. This is done by clicking "Show Code". A window with the instructions around the actual program counter will appear. You can enlarge or reduce the window size to your needs. Whenever you stop the calculator or during "Single Step" or single step "Animation" the actual program counter address, instruction code and mnemonics of the instructions will be shown.

The next instruction line, that will be executed is shown in blue color and marked with an arrow character.

The left column shows the address of the instruction in octal notation. The preceding number is the actual ROM Bank. Each ROM bank ranges from 0000-7777 octal, which is 4k bytes or 12-bit. There is a theoretical maximum of 16 banks possible, which would allow a maximum of 32k ROM code. The HP-34C, the biggest model in our selection, however uses "only" 8k.

The next column shows the 10-bit instruction code in octal notation. Notice, that there are no digits above 7 used. The right side of the window shows the mnemonics of the

🖳 Disassembly		x
		1
	0756 c + 1 -> c[x]	<u>^</u>
	0756 c + 1 -> c[x]	
	0404 1 -> s 4	
	1117 if n/c go to 0623	
	1124 if 1 = s 9	
	0740 then go to 0740	
	$1234 \text{ if } 0 = s \ 10$	
	0727 then go to 0727	
	0324 if 1 = s 3	
	1743 then go to 1743	
	0314 0 -≻ s 3	
0-0743:	0334 if 0 = s 3	
0-0744:	1672 then go to 1672	
0-0745:	1734 if 0 = s 15	
0-0746:	0742 then go to 0742	
0-0747:	1713 if n/c go to 0762	
0-0750:	0110 clear s	
0-0751:	0210 display toggle	
0-0752:	0341 jsb 0470	
0-0753:	1760 hi i'm woodstock	
0-0754:	0324 if 1 = s 3	
0-0755:	0742 then go to 0742	
0-0756:	0324 if 1 = s 3	
0-0757:	0247 then go to 0247	
0-0760:	1734 if 0 = s 15	
0-0761:	0756 then go to 0756	
0-0762:	0310 display off	
0-0763:	0420 binary	
0-0764:	1474 p = 0	
0-0765:	$0416 \ 0 \ -> \ c[x]$	
	0132 a exchange b[w]	
		-

instructions. What you see in the window is a text file named "rom_25.dis" for the HP-25 calculator. Every calculator has an assiciated text file, which you can edit with a text editor if you like. You can add your remarks in each line and they will be shown the next time in the application. But beware to remove or add lines whe using an exteral editor, the executed instructions will not match any longer the text lines. Better to use the comment entry described below, which prohibits to insert or delete lines.

14.1 Comment Entry

When you are analyzing the calculator firmware you want to enter line comments. This is easily done just by entering your text behind each line. It is not possible to overwrite or remove the address and opcode, but any text at the right can be entered. You can even remove the Mnemonic code and replace it by your own text, but this is not advisable.

```
۰
 0-0000:
            1 0672 a + 1 -> a[w] // Power On reset
 0-0001:
            1 0672 a + 1 -> a[w]
            1 1710 f exch a
 0-0002:
                                     // f = 02 default number of decimals shown
 0-0003:
           1 0410 ml exch c
 0-0004: 1 0432 0 -> c[w]
                                     // clear register c
 0-0005: 1 0214 0 -> s 2
 0-0006: 1 0110 clear s
                                     // clear all 16 status flags
                     jsb 0347 // check exponent sign in c
if c[m] # 0 // Mantissa loo c
                                    // switch display off
 0-0007: 1 0310 display off
 0-0010: 1 1635 jsb 0347 //

0-0011: 1 1566 if c[m] # 0 //

0-0012: 0014 then go to 0014

0-0013: 0432 0 -> c[w] //
>
                                  // Mantissa is O
 0-0014:
              0072 0 -> b[w]
 0-0015:
              0445 jsb 0111
                                     // set b register to 2100000000000 prepare 0.00 display
              1610 f \rightarrow a // f register contains number of decimals
0134 if 0 = s 1 // flag SCI not set ?
 0-0016:
 0-0017:
 0-0020:
               0120 then go to 0120
              1015 jsb 0203
 0-0021:
                                      // show SCI format
 0-0022:
              1112 a - 1 -> a[xs]
              1512 if a[xs] # 0
 0-0023:
 0-0024:
              0264 then go to 0264
 0-0025:
              0272 c -> a[w]
 0-0026:
              1363 if n/c go to 0274
 0-0027:
               0006 0 -> a[wp]
 0-0030:
                1645 jsb 0351
               1715 jsb 0363
 0-0031:
 0-0032:
              1074 p = 1
              0706 shift left a[wp]
 0-0033:
 0-0034:
              1174 p = 3
 0-0035:
              0706 shift left a[wp]
```

Example of HP-21 code with comments entered.

If you close the window you will be asked, whether the comments should be saved to file. This will overwrite your original .dis file for this calculator. If you want to keep the original you should make a copy before.

14.2 Program Flow

If you run the calculator code, either by Single Step or Run, a number is shown after the address, which shows you how often this line was executed. This gives you information about which lines are used by the program or how often a loop is executed. If a line is executed more than 10000 times, ">9999" will be shown. This is normally the case in the "wait for keyboard entry" loop.

15. RAM registers

As some models have additional RAM, which in fact is true for all models except HP-21, you can also show the RAM contents by pressing "Show RAM". A window with 64 registers, the maximum amount which only the HP-34 and HP-67 can provide, are shown. This window shows the actual register contents, for some models this is the "Continuous Memory", for others it is just the volatile registers. Please note, that the HP-25 has only 16 registers, only the left upper part of the window will change if you store a 49 step program or store variables in the 8 registers.

Whenever a register value has changed since the last step of the program it will be marked in red color. This makes it more easy to follow any changes.

You can also manipulate the register contents by entering a new value. Enlarge the window at the bottom and you will see the entry fields. First chose the register number then enter its value.

🖳 RAM Register			
■ R.		32	
	00000000000000000000000000000000000000	00000	000000000000000000000000000000000000000

16. Preferences

Emulator Emulation Speed	Startup	Calculator
ff Init RAM Value (hex) Show register while running ShowCycles OK	 Full Window Auto Connect Auto Run Show Code 	HP-25C ▼

By clicking the "Preferences" Button a dialog appears to enter some convenient personal likings.

The Emulation speed is a number between 1 and 1000. It determines how many machine cycles are executed before any display refresh is done and makes the calculations faster or slower. Normal values are between 50 and 500.

The Init Value will be used when you fill der RAM registers with a value by the "Init RAM" button. Any value between 00 and ff can be entered as hexadecimal number.

"Show registers while running" refreshes the registers while the calculator is running. Deactivating avoids continuously changing values on the screen.

More preferences affect the behaviour at startup.

Each button has a small text to explain its functionality. You can activate it by "Show Tool Tips"

When "Full Window" is activated the program starts with the Calculator and Emulator fields visible.

"Auto Connect" tries automatically to communicate with the LP circuit at startup by selecting the last found COM Port in the list of available serial ports.

"Auto Run" starts the selected calculator at startup and "0.00" will automatically appear

"Show Code" opens the disassembly window automatically.

When you press the OK button the preferences are saved to file "HPLP.prefs, which is automatically loaded at startup. If you close the dialog without saving your entries are discarded. If no preference file is present default values are used.

16.1 Save

If you want to save your session use this button and the complete processor context, all ACT registers and all RAM registers, are saved to a file of your choice. You can load this file later and the calculator code will proceed exactly from this point.

16.2 Load

When you have saved your code analyzing session you can load one of the files to proceed where you have stopped perhaps the day before.

17. Operator

There is even more! When you click the "Show Operator" button, a new set of buttons will appear. The buttons, which appear on the right side are mainly reserved for programming the HPLP by PANAMATIK before delivery. They are used to program the 512kByte Flash Memory, which contains the ROM instruction codes of all calculators, key tables, texts and much more. Because there can arise unexpected results, if you use these buttons, they are disabled by default. Only by entering the Operator Passwort they can be activated. But some (not dangerous) buttons are always enabled.

Get HPType	Write ROM code	Verify ROM code
Get Version	Write Keytables	Verify Keytables
iet Date/Time	Write Text/Mnemo	Verify Text/Mnemo
Get Flash Data	Write Programs	Verify Programs
Get RAM Data	Write Registers	Verify Registers
	Write FlashInfo	Verify FlashInfo
	Write All	Verify All
	Send Serial Number	
Enter Bootloader	Save Flash	Load Flash
Start Application	Erase Flash Page	pg 0 addr 0000
	Erase Cont Memory	Erase Entire Flash
	Write HP-25 Programs	Write HP-67 Program
erator Password		Read HP67 Program
	Write Functions	Read File Convert

"Get HP Type"

This reads and displays the actual calculator type in the message field. It can be used to check whether the connection is established correctly.

"Get Version"

Reads and displays the actual firmware version in the message field.

"Get Date Time"

Reads the actual date and time snapshot and displayes it in the message field.

"Enter Bootloader"

With this button you enter the bootloader. The normal communication with the LP circuit will not longer be possible. The display shows either the bootloader version or all 8s. If the newer bootloader is installed you can restart the LP application and leave the bootloader.

"Start application"

With this button you leave the bootloader and the LP circuit will start up. Only the newer bootloader version, which shows the version 1.12 in the display, is capable of jumping to the application by the "Start Application" button. With the previous boot loader version the calculator must be switched off and on again.

18. Get Flash Data

A dialog appears when you press "Get Flash Data".

SST25 Flash	Memory	HELLO I'M WOODSTOCK LOW POWER PA	512k Flash is divied into eight 64k blocks addressed by 0-FFF
bank 0-7	0	0x8000 20 0x8001 20	Block 0 - Key Tables Trace tables Quotations read only
		0x8002 20	0000 KEYTABLE // 128 byte per calculator 4k
addr 0-FFFF	8000	0x8003 48 H	1000 PRINTTRACETABLE // 128 byte per calculator 4k
	4096	0x8004 45 E	2000 TRACETABLE // 128 byte per calculator 4k 3000 KEYSEQUENCE // ca 800 bytes 1 k reserved
oytes	4000	0x8005 4C L 0x8006 4C L	4000 FLASHINFO // 256 byte
Read Flash	Read Variables	0x8007 30 0	4100 FCNADDR // 512 byte (1 kB) function Offset
nead riash	Read variables	0x8008 20	8000 QUOTATIONS // 32k Quotations
		0x8009 20	
		0x800A 20 0x800B 20	
		0x800C 49 1	
		0x800D 27 '	
		0x800E 4D M	
		0x800F 20 0x8010 57 W	
		0x8010 57 W	
		0x8012 4F O	
		0x8013 44 D	
		0x8014 53 S	
		0x8015 54 T 0x8016 4F O	
		0x8017 43 C	
		0x8018 4B K	

18.1 ReadFlash

With "Read Flash" button you can read any portion of the 512k Flash memory. It will be displayed as HEX characters and every 64 bytes as a character string. You can only display the contents but not erase or write. The flash memory is divided into 8 banks of 64k. The adress within the bank can be set in the addr field before reading.

18.2 Read Variables

🖳 FlashDataDi	alog	
-SST25 Flash	Memory	Flash Variables
bank 0-7 addr 0-FFFF	0 8000	0x0000: 03 00 00 02 25 00 00 00 0x0008: 25 00 01 00 00 00 00 11 0x0010: 00 00 00 00 00 00 00 00
bytes Read Flash	4096 Read Variables	0x0018: 00 00 00 00 00 00 00 00 0x0020: 00 00 00 00 02 00 00 00 0x0028: 00 00 00 00 00 00 00 00 0x0038: 01 05 00 00 00 00 00 00 0x0038: 00 00 00 00 00 00 00
		user_flags 0x000003 DefaultTypeNr 0x02 OperatingHours 0x00000025 OperatingTime 0x0025 WriteCycles 0x000001 TempOffset 0 reserved 0 NrOfCalculators 17 SerialNumber 00 00 00 00 00 00 00 00 00 00 Version 01 05

"Read Variables" shows a specific portion of the flash memory which contains the so called flash variables.

19. Get RAM Data

This button opens a dialog for reading RAM (Random Access Memory of the PIC processor).

19.1 Read RAM

You can enter any address within the allowed range 0-FFFF and with "Read RAM" the contents of the RAM will be displayed. There is no special purpose for this, unless you want to analyze the PIC memory. In the image below you can see the begin of the "Continuous Memory" of the current running calculator. The first 7 bytes shows register R0, which contains the number 78.00.

RAMDataDialog PIC addr 0-FFFF 20A0 bytes 80 Read RAM Registers O LP O ACT Read Registers	0x20A0 01 0x20A1 00 0x20A2 00 0x20A3 00 0x20A4 00 0x20A5 80 0x20A6 07 0x20A7 00 0x20A9 00 0x20A9 00 0x20A9 00 0x20A9 00 0x20A9 00 0x20A0 00 0x20A7 00 0x20A9 00 0x20A9 00 0x20A7 00 0x20A7 00 0x20A9 00 0x20A7 00 0x20A7<	► PIC16LF1519 1k RAM 0000-001F 0080-009F // special function 0020-006F 00A0-00EF // general punction 0020-006F 00A0-00EF // common R/ 00A0-00C9 // ACT registers a bit 00CA-00EC // ACT registers a test of 120-016F // RAM bank 280 bit 01a0-01eF // RAM bank 280 bit 0220-026F // RAM bank 580 bit 0220-026F // RAM bank 580 bit 03a0-03eF // RAM bank 580 bit 03a0-03eF // RAM bank 580 bit 0420-046F // RAM bank 580 bit 05a0-03eF // RAM bank 580 bit 05a0-05eF // RAM bank 1180 bit 0620-064F // RAM bank 1248 bit 0620-029AF // 31 RAM banks of 0000-0000 bit 0000000000000000000000000000000	bose RĀM AM mimored c 14 bytes n m BCD 7 bytes ytes ytes ytes ytes ytes ytes ytes ytes ytes ytes ytes ytes sytes
	0x20B4 00 0x20B5 00 0x20B6 00 0x20B7 00 0x20B7 00 0x20B8 00	Program Flash Memory lower bytes 8000-BFFF // 32k PIC Flash mem	ory

19.2 Read Registers

🖳 RAMDataDialog	
PIC addr 0-FFFF 20A0 bytes 80 Read RAM Registers LP ACT Read Registers	act_pc 0207 0x0087 opcode 0560 0x170 act_s 0x0200 act_p 10 act_f 0 act_key 0162 0x0072 act_ram 0076 0x003E act_a 78000FFFFF100 act_b 0030000000022 act_c 0780000000001 act_y 0120000000000 act_t 000000000000 act_m 000000000000 act_m 000000000000

"Read Registers" shows the ACT registers of the LP circuit, which should display the same values as in the main menu.

Appendix

HP-25 Program Steps Mnemonics

"GTO nn", "FIX n", "SCI n", "ENG n", "STO n", "RCL n", "STO+n", "STO-n", "STO*n", "STO/n", "->H.MS", "INT", "SQRT", "Y^X", "SIN", "COS", "TAN", "LN", "LOG", "->R", "->H", "FRAC", "x^2", "ABS", "SIN-1", "COS-1", "TAN-1", "e^x", "10^x", "->P", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", "x<y?", "x>=y?", "x!=y?", "x=y?", "x<0?", "x>=0?", "x!=0?", "x=0?", "LASTX", "PAUSE", "", "CL", "CLREG", "CLSTK", "xmean", "s", "E-", "PI", "NOP", "", "DEG", "RAD", "GRD", "%", "1/x", "-", "+", "*", "/", ".", "R/S","ENTER","CHS","EEX","CLX", "x<>y","ROLL","E+",

HP-29C Program Steps Mnemonics

"R/S", "RTN", "ENTER", "CHS", "EEX", "CLX", "CLREG", "CLE", "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", ".", "-", "+", "*", "/", "INT", "FRAC", "ABS", "SQRT", "x^2", "Y^X", "%", "1/x", "PI", "LastX", "SIN", "COS", "TAN", SIN-1", "COS-1", "TAN-1", "e^x", "LN", "10^x", "LOG", "x<=y?", "x>y?", "x!=y?", "x=y?", "x>0?", "x!=0?", "x=0?", "x<0?", "->H", "->H.MS", "->P", "->R", "FIX", "SCI", "ENG", "DEG", "RAD", "GRD", "X<>Y", "ROLL", "E+", "E-", "xmean", "s", "PAUSE", "DSZ", "ISZ", "GSB n", "GTO n", "LBL n" "GSB(i)", "GTO(i)", "LBL(i)", "RCL n", "STO i", "STO-n", "STO+n", "STO*n", "STO-.n", "STO+.n", "STO*.n", "STO/.n" "RCL(i)", "STO(i)", "STO-(i)", "STO+(i)", "STO*(i)", "STO/(i)", "PRX", "PRSPC", "PRSTK", "PRE", "PRREG",

HP-33C Program Steps Mnemonics

"GTO", "STO", "RCL" "RTN", "GSB" "0", "1", "2", "3", "4", "5", "6", "7", "8", "9", ".", "R/S", "-", "+", "*", "/", "SQRT", "LN", "LOG", "Y^X", "->R", "->RAD", "->HMS", "SIN", "COS", "TAN", "LASTX", "PAUSE", "x<=y", "x>y", "x!=y", "x=y", "x^2", "e^x", "10^x", "1/x", "->P", "->DEG", "->H", "SIN-1", "COS-1", "TAN-1", "PI", "%", "x<0", "x>0", "x!=0", "x=0", "FIX", "SCI", "ENG", "GRD", "L.R.", "E+", "CHS", "EEX", "CLX", "RAD", "x", "E-", "ENTER", "CL REG", "CL STK", "DEG", "NOP", "s", "INT", "FRAC", "ABS"

HP-34C Program Steps Mnemonics

"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", ".", "R/S", "SF 0", "SF 1", "SF 2", "SF 3","CF 0", "CF 1", "CF 2", "CF 3", "F?0", "F?1", "F?2", "F?3" LBL", "LASTX", "GRD", "ISG", SOLVE", "SUM", "CLREG", "CLR E", "x!", "e^x", "LN", "RTN", "1/x", "10^x", "LOG" FIX", "SCI", "ENG", "Y^X", "x^2", "SQRT", DEG", "RAD", "PI", ".", "y", "R->P", "P->R", RCL E,", "ROLL UP", "r", "D->R", "R->D", RCL" "RCL 8", "RCL 9", "RCL(i)", "RCL I", "L.R.", "HMS->H", "H->HMS", RCL .", "DSE", "GSB I", "D%", "SIN-1", "SIN", STO", "STO(i)", "STO I", "/x", "COS-1", "COS", STO .", "DSP I", "GTO I", "s", "TAN-1", "TAN", "ENTER", "%", "x<0", "x<=y", "-", "CLX", "ABS", "x=0", "x=y", "/", "X<>(i)", "ROLL , "X<>I", "X<Y", "PAUSE", "E-", "E+", "R/S"</pre>

HP-67 Program Steps Mnemonics

```
"R/S" , "1/x" , "x^2" , "SQRT" ,"E+" , "E-" , "Y^X" , "LN" , "e^x" ,"LOG" , "10^x", "RTN" ,
"SIN", "COS", "TAN", "SIN-1", "COS-1", "TAN-1",
"0", "1", "2", "3", "4", "5", "6", "7", "8", "9", ".", "+", "-", "*", "/",
"ENTER", "CHS", "EEX", "CLX",
"N!" , "/x" , "s" , "%" , "%CH" , "ABS" , "INT" , "FRAC" , "RND" ,
"X<>Y", "X<>I", "ROLL", "ROLL UP", "ENG", "FIX", "SCI",
"R->P" , "P->R" , "D->R" , "R->D" , "H->H.MS" , "H.MS->H" , "H.MS+" ,
"STO (i)" , "RCL (i)" ,
"SPACE" , "PAUSE" , "-X-" , "STK" , "LASTX" , "W/DATA" , "MERGE" , "PI" ,
"DEG", "RAD", "GRD", "P<>S", "CLREG", "REG",
"x!=y", "x=y", "x>y", "x!=0", "x=0", "x>0", "x<0", "x<=y",
"F? 0-3" , "CF 0-3", "SF 0-3 ,
"ISZ I" , "ISZ (i)" , "DSZ I" , "DSZ (i)" ,
"DSP 0-9" , "DSP (i)" ,
"RCL 0-9" , "RCL A-E", "RCL I" ,
"STO 0-9" , "STO A-E" , "STO I" ,
"STO - 0-9" , "STO - (i)" ,
"STO + 0-9" , "STO + (i)" ,
"STO * 0-9" , "STO * (i)" ,
"STO / 0-9" , "STO / (i)" ,
"GSB 0-9" , "GSB A-E" , "GSB a-e" , "GSB (i)" ,
"GTO 0-9" , "GTO A-E" , "GTO a-e" , "GTO (i)" ,
"LBL 0-9" , "LBL A-E" , "LBL a-e" , "LBL (i)" ,
```

Files

The Conn Kit application uses some files, which must be located in the same directory than the .exe application.

Application file

The executable is named HP25LP.exe. Although the LP Conn Kit is not only for the HP-25, but a multicalculator application, this name was choosen because the HP-25 is the most common and my favourite calculator. There is no installation necessary. Just start the application from its directory.

Bitmap Files

Each calculator has its own .bmp image file, which is loaded when the calculator is selected: hp21.bmp hp22.bmp hp25.bmp etc. If the file is not present the application will show the HP-25 bitmap, although the buttons will react differently.

Disassembly files

These files with ending .dis contain the machine code for each calculator. They are essential to emulate the calculator and show and execute its machine code. You can edit these files to enter your comments, but it is not allowed to insert or delete lines. If you are very experienced and change the machine operation codes you can change the calculators behaviour. For adding your comments use the "Show Code" window. It is save because you cannot unintentionally delete lines or change the code.

Preferences

This small file contains your last saved preferences. If it is not present default values are used.

Update files

For updating your HPLP circuit to the newest version you find an update file like HP25LP105.act.

Flash files

There is a file "HPLPflash105.bin", which can be programmed to the 512 k flash memory. It only updates the fixed part of the memory, necessary to run the LP circuit, but does not affect your user data.

Backup files

These .wlp files are your personal backup files with user data, all programs all register sets. Constants and "Continuous Memory" you previously have saved. The file extension is .wlp

(Woodstock LP) . There is a default Backup file ClearMemory.wlp, which clears all your data to factory settings.