
Inside the HP-01

This document gives some special technical information about the „new HP-01“ circuit,
which replaces the forty year old original HP-01 Hybrid module and makes repairs
possible, which were unthinkable before.

How does it work? What were the tricks? How do the components play together?

The new HP-01

The Hardware

The new HP-01 Hardware had to be designed as simple as possible and had to contain as
few components as imaginable for two reasons. First, there is not much space inside the
HP-01 watch, and last, the more components to use, the more current consumption will
empty the small battery cells. Even the modern variety of hundred thousands of electronic
components offer only few possibilities.

I chose a Low Power PIC processor PIC16LF1619, which is in the nanoampere range
when sleeping, and offers up to 36 IO pins, for which every single of them needed to be
used. And with its only 4x4mm size, it was perfectly fitting for the application.

Another crucial component was the real time clock. After comparing many options I chose
a highly accurate chip PCF2127 , which is originally designed for stand alone electronic
heat cost allocators.

The LED display is driven directly by the PIC processor , there was no room for driver
arrays, thus only two active components are used.

Why is the new HP-01 circuit green and not white ?

Originally I wanted to produce the printed circuit board in white, to imitate the original
ceramic board as close as possible. But the manufacturer couldn't guarantee the fine pitch
soldering of the processor on a board with white solder mask. Only green solder mask was
approved for these small pads. With a heavy heart I agreed to produce the normal green
color, because functionality has priority before design.

And to be honest, if the circuit is installed once, and the watch case is closed, nobody ever
will see the green printed circuit board. :)

How to sleep?

The important task of running the watch for month or years with the same batteries, can
only be achieved by switching off the display after some seconds and switching the
processor into deep sleep mode.

Just for showing what a bunch of tasks had to be accomplished before going to sleep and
another bunch after wakeup, the following code shows the GotoSleep() procedure of the
new HP-01. If you are familiar with C and with PIC peripherals you can understand what is
going on, if not, just read the comments and have a slight imagination of it.

Enter Sleep mode, select all keyboard rows simultaneously and activate PORTB
Change Interrupt.
if stopwatch is running activate Timer 1 Overflow Interrupt

void GotoSleep()
{
 GIE=0; // Global Interrupts disable, stop display running
 LATD=0; // switch 8 LED segments off
 COLON=0; // switch colon dot off
 LATA=0xC0; // /CE=High /TS=High select all keyboard rows ROW1-6 low

 flags &=~F_SHOWINFO; // end text display
 act_flags&=~F_DISPLAY_ON; // tell emulator, that display is switched off

 char buf[1]; // send command to RTC to disable second interrupt
 buf[0]=0x00; // normal operation, 24h mode, Second Interrupt disabled
 RTCWrite(0x00,buf,1); // write to Control register 1, disable second interrupt

 if(TMR1ON) // is Stopwatch running ?
 {
 TMR1IE=1; // enable Timer1 interrupt for wakeup from sleep at overflow
 } else // Stopwatch not running
 {
 buf[0]=7; // 5=1024 Hz 6=1 Hz 7=High Z, High Z consumes 0 uA saves power
 RTCWrite(0x0f,buf,1); // write to CLKOUT register, disable 1024 Hz clock
 }
 TMR2IE=0; // disable Timer2 Interrupt to avoid wake up by Timer 2 overflow
 TMR2IF=0; // reset Timer 2 pending bit

L1:
// setup Interrupt On Change configuration

 IOCBN=0x3f; // negative edge interrupts for all 5 columns and /INT for alarm
 IOCBF=0x00; // reset IOC Flags
 IOCIE=1; // enable Interrupt On Change

// all peripheral interrupts must be disabled, because they could
// accidentally wakeup from sleep

#asm
sleep ; enter deep sleep mode, FOSC stopped, processor halted

 nop ; this operation is executed after wakeup from sleep
#endasm

// wakeup from sleep by either key pressed or Timer 1 overflow

 if(TMR1IF) // can only be set if TMR1ON=1 SWSTARTED, every 8,5 Minutes
 {
 TMR1IF=0;
 LastTMR1H=TMR1H; // must be 0

 if(!(hp01_flags & F_SWDEC)) // counting upwards
 {
 SWStartTime++; // increment overflow counter, add 512 seconds
 } else
 {
 if(SWStartTime==0) // countdown zero ?
 {
 hp01_flags &= ~F_SWDEC; // count upwards after reaching zero
 AlarmCnt=ALARMTIME; // Start Alarm Buzzer when reaching zero
 SleepCnt=SleepTime; // keep awake as long as alarm is active
 goto L2;
 } else
 SWStartTime--; // decrement Stopwatch counter, subtract 512 seconds
 }
 goto L1; // goto sleep again
 }

 SleepCnt=SleepTime; // failsafe, if unwanted wakeup without keycode or
alarm

 if(IOCIF) // keyboard interrupt occurred or alarm ?
 {
 if(IOCBF & 1) // Alarm during sleep?
 {
// noting to do
 }
 else
 {
 if(!PressKey())
 {
// ShowError('3'); // can happen if key bounce wake up
// goto L1;
 }
 }
 } else
 {
// this should never occur if all other interrupts are disabled and
// pending flags reset prior to sleep
 ShowError('9');
 }

L2:
 TMR1IE=0; // disable Timer1 interrupt
 IOCIE=0; // disable Interrupt on Change
 IOCBF=0x00; // reset all IOC Flags, clears also IOCIF

 RTCReadDate(); // read actual Time before display is activated

 buf[0]=0x01; // normal operation, 24h mode, Second Interrupt enabled
 RTCWrite(0x00,buf,1); // write to Control register 1, enable second interrupt
 buf[0]=5; // 5=1024 Hz
 RTCWrite(0x0f,buf,1); // write to CLKOUT register, 1024 Hz

 TMR2IE=1; // enable Time2 Interrupt
 PEIE=1; // enable peripheral interrupts
 GIE=1; // enable global interupts, start display running
}

The running Stopwatch during sleep mode

For having a very low power consumption and achieving years of battery lifetime, the
sleep mode is entered as soon as the display shuts off. In power down mode, the
processor only needs 20nA, which is nothing, and all clocks are stopped and it is not
possible to display anything.

Only four things must be handled in sleep mode:

1.) a counting clock with date and time,

2.) a running stopwatch if started

3.) checking the alarm time

4.) wake up by any key press.

Fortunately the RTC chip can handle the counting clock date and time and the alarm. And
by a special feature of the PIC chip, called "Interrupt On Change", the processor will wake
up by any key pressed.

But none of them can handle a stopwatch! It is not possible to emulate a running
stopwatch if the RTC has no stopwatch registers, nor with a sleeping processor. There was
only one solution. They have to help each other.

If the PIC processor has shutdown all its clocks, it anyhow accepts an external clock signal
at one of its input pins, which does count an internal 16-bit timer upwards. And the RTC is
able to deliver that accurate clock signal, which is connected to this external clock input.

So both together can build a counting unit, which does not need to wake up the processor.
As the stopwatch counts in 1/100 seconds, it would be desirable to have a 100 Hz clock
from the RTC. But according to the data sheet this is not possible, it can generate either a
1 Hz or 1024 Hz signal. 1 Hz is too slow, 1024 Hz is too fast. But by using a 1:8 prescaler
in the PIC timer module, the 1024 Hz can be divided to 128 Hz and voila, this is a good
approximation. 128 pulses represent one second of stopwatch count. Now it is easy to
calculate the 1/100 seconds from 1/128 seconds just by making a multiplication. In fact,
there have to be done some more calculations to get the actual stopwatch displayed from
the timer value, as the stopwatch is able also to count downwards and the 16-bit
hardware timer can only count upwards and it can count only 512 seconds (8 minutes 32
seconds) before it overflows. Fortunately the overflow can be programmed to wake up the
processor. If a wakeup occurs by timer overflow, which happens every 512 seconds
(about 8 minutes) if stopwatch is running, the processor just adds or subtracts 512
seconds to the stopwatch base value and goes to sleep again.

This was one of the last puzzles to solve for the new HP-01

The constant LED display brightness

Driving a LED display with several digits is always done by multiplexing. That is, only one
digit is shown at a time for about 1 ms, then the next digit and so on. For the human eye it
appears as if the display digits are constantly illuminated.

When displaying different digits, some need more current than others. The digit “8” for
example has all segments on, and the digit “1” only 2 segments or a single dot with only
one segment, will be displayed in different brightness, because the same current flows
through 7 segments, or through only 1 or 2 segments. This effect is clearly visible and
cannot be tolerated.

There was no way of inserting a constant current source for each digit or segment like in
the original HP-01, neither were current limiting chips for 1,5 Volt available not would they
have fit into the limited space of the watch. The original HP-01 had a unique display driver
for this purpose, but I could not place an order for developing a display driver silicon chip
of my own.

The solution I found was to show each multiplexed digit or character not at equal time
intervals, but specifically different times, to compensate the brightness difference. i.e. the
digit “8” is shown longer, that the digit “1”. One of the miracles of software with embedded
systems, is that this kind of tasks sometimes really are possible. With a table of different
times for each character, I managed to program the display multiplexing timer afer every
digit to achieve a constant brightness for each character. The multiplexing frequency is in
the range of 400 to 1200 Hz, instead of a constant 800 Hz or 1kHz as usual.

The Alarm Buzzer

The HP-01 back cover contains a piezo buzzer, which beeps for 5 seconds if an alarm is
triggered. The new HP-01 does control the buzzer by issuing a square wave frequency of
about 800 Hz in intervals.

But there was a difficulty. The 800 Hz signal had to be generated by the same unit that
drives the LED display multiplexer. Don't ask why, but there was no other way. As a
consequence when the alarm buzzer was used, the intelligent brightness adjust procedure
had to be deactivated as long as the buzzer sound was on. Indeed, it is visible in the
display during alarm beed, that the brightness now is different for the short intervals of
beeping. Although this does not occur in the original HP-01 it is a nice feature, because the
display does assist the alarm by a kind of slightly blinking.

How I nearly failed!

The HP-01 hybrid module with
the two ROM chips visible on
the upper right.

Below is the arithmetic chip,
left is the display driver die.

For making a replacement of the original HP-01 it was essential to read the original ROM
code from the original hybrid module. There was one critical moment, when I nearly lost
my last chance to read the ROM code, when attaching my oscilloscope probe to the small
circuits. I ripped off one of a small bond wires without the chance ever to reconnect it.

The very small bond wires are
attached to the golden circuit
paths of the hybrid module. The
other end is connected to the
silicon dies.

In the middle of the image you
can clearly see the empty pad,
where the bond wire originally
was attached.

But I was very lucky! The wire
was not related to the ROM
signals, it was the carry bit of
the arithmetic circuit.

Thus finally I could read the
ROMs and the new HP-01 was
given birth.

The Firmware

How is the display driven? How is the keyboard read?

They are driven together! The first 6 digits of the display are directly connected to the 6
keyboard rows. During display multiplexing the keyboard is read at the same time. If the
keyboard rows had to be separate lines, the processor would not have had enough pins
for both.

The HP-01 keyboard has 6 rows of 5 columns, which theoretically allows to distinguish 30
buttons, 28 buttons are present. The new HP-01 has the same keyboard layout than the
original keyboard, as well as its pads are gold plated.

The Emulator

The program part, that executes the original HP-01 firmware instructions to calculate the
basic arithmetic functions and show the time date and stopwatch, is called an „Emulator.“
This emulator is a derivative of Eric Smith's famous „nonpareil“ emulator, which he gave to
the public domain some years ago. Although many of the secrets of the HP-01 firmware
could be revealed by carefully reading the HP patent US4158285, and many others I could
find and solve by myself, still all HP emulators benefit from his work directly or indirectly
now and in the future. Many many credits to him.

Bernhard Emese
PANAMATIK

Sept. 14th 2016

HP-01 Schematic

	How to sleep?

